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S rr M MARY 
The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body 
surface (having curvature) is studied for a given O (1) basic flow and magnetic field, when (i) the applied magnetic field 
is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. (O(1) and 
O(Re -~) mean the first and second order approximations respectively in an expansion scheme in powers of Re -~, 
Re being the Reynolds number.) The technique of matched asymptotic expansions is used to solve the problem. The 
governing partial differential equations to O(Re -�89 boundary layer approximation are found to give similarity 
solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow 
with analytic surface curvature distributions in case (ii). The equations are solved numerically. 

In case (i) it is seen that the effect of the magnetic field on the skin-friction-correction due to the curvature is very 
small. Also the magnetic field at the wall is reduced by the curvature on the convex side. 

In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the 
magnetic field on the O (1) and O (Re- ~:) skin-friction coefficients increases with the increase of the electrical conductivity 
of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not 
influence the correction to the skin-friction significantly. 

1. Introduction 

The theoretical s tudy o f m a g n e t o h y d r o d y n a m i c  flow a round  obstacles and at system boundar ies  
is impor tant  mainly because the ambient  magnet ic  field significantly influences the structure 
of the boundary  layer. 

In  hydrodynamics ,  Van Dyke  [1] formulated the problem of  higher order  approximat ions  
in boundary  layer theory. He distinguished five additive effects to the O (Re-~)  approximat ion ,  
where Re is the Reynolds  number.  Each  of  these effects has been separately studied. Naras imha  
hnd Ozha [2] have studied the longitudinal  surface curvature  effect. They have given a tho rough  
review of the work  on the problem. H o n d a  and Kiyokawa  [3]  have studied the second order  
bounda ry  layer p roblem in a different way. 

To the best of  the knowledge of  the authors,  no  such general formulat ion to obta in  higher 
order  approximat ions  to M H D  b o u n d a r y  layers exists. In  this work  an  a t tempt  is made  to 
investigate the second order  approximat ion  to M H D  b o u n d a r y  layers by considering the effect 
of the longitudinal surface curvature. Two magnet ic  field configurat ions are considered, viz. 
(i) the magnet ic  field aligned with the velocity field in the basic flow and (ii) the magnet ic  field 
within the body  surface (i.e. flow over a magnet ised surface). 

Gr ibben [4] has investigated the Prandt l - type  M H D  b o u n d a r y  layer flow with non-zero  
pressure gradient and the magnet ic  field aligned to the velocity field in the basic flow. Zigulev 
[5] and Glauert  [6] have studied such a b o u n d a r y  layer on a magnetised surface for a uniform 
basic flow. 

In  this work,  we use the matched asymptot ic  expansions technique to solve the problem. 
Two sets of complementa ry  expansions in powers of  Re -~  to  be valid in the regions far away 
f rom the body  surface (outer) and very close to it (inner) are const ructed for the field variables. 
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These expansions are suitably matched in the region of their common validity to give the ad- 
ditional boundary conditions for the boundary layer equations. The boundary layer partial 
differential equations are transformed into ordinary differential equations by a similarity 
analysis. This is possible for a family of pressure gradients and surface curvature distributions 
in the case (i), and for a uniform basic flow and analytic surface curvature distribution in the 
case (ii). The equations are solved numerically on an IBM 7044 digital computer at I.I.T. 
Kanpur {India) by the Runge Kutta-Gill method for moderate values of the parameters. The 
results are presented in the form of tables and graphs at the end of the paper. 

2. Formulation of the problem with aligned magnetic field (Case (1) ) . 

Let us consider the axially directed steady flow of an electrically conducting, incompressible 
and viscous fluid past a smooth electrically insulated solid surface of revolution in the presence 
of a magnetic field. Let (X', Y, Z) be rectangular Cartesian coordinates of any point on  the 
body-surface and let the body-axis lie along the axis of X. In the limit when the Z-coordinate 
of every point tends to infinity, we obtain the two-dimensional case, which is studied here. The 
governing equations for the problem are the equations of continuity for the velocity and mag- 
netic fields and the ~omentum conservation and the magnetic diffusion equations. Expressed 
in non-dimensional vector form [7] they are, 

div Q = 0, (1) 

Q. grad Q = - grad 1I + S H .  grad H -  e 2 curl curl Q,  (2) 

div H = 0 (3) 
and 

Q • H = (e2/Pm) curl H ,  (4) 
where 

U~ )/(p Q~ ),  Pro= a*#*v*,  S = (#* , 2  , , 2  

~2 = Re-1 = v*/(Q* L*), H = P + S H 2 / 2 .  

Q and H represent the non-dimensional velocity and magnetic field vectors, P the non- 
dimensional pressure, L* some characteristic length and a*, #*, v* are the dimensional 
electrical conductivity, the magnetic susceptibility and the kinematic viscosity. Starred quan- 
tities are dimensional and the subscript represents the value in the region specified by it. 

The boundary conditions for the problem are 

~ a n  "--~1 , Q . . . .  --*0, Htan----~l, Hnorm----~0, at up stream infinity, (5a) 

Q = 0, Hnorm= 0, at the body surface, (5b) 

where the subscripts "tan" and "norm" denote the components tangential and normal to the 
body surface respectively. 

As is usually done in the method of matched asymptotic expansions, we construct outer 
expansions of the field variables, to be valid in the basic flow, in the limit e~0, with other 
variables fixed. Thus 

Q = QI+eQ2 4 . . . .  (6) 

and similarly for P, H and H, where Q1, {22, etc. are functions of the coordinates only. 
We substitute the outer expansions in the governing equations and collect terms with equal 

powers of e. Thus equation (4) gives 

Q l x H ~ = 0 = { 2 2 x H  2= . . . .  (7) 

From (7) and (5), we obtain 

O I = H , ,  Q 2=H2 ,  etc. (S) 

The arbitrary scalar constants multiplying H~,//2, etc. in equations (8) can be taken to be 
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unity without any loss of generality. Thus in the outer flow the magnetic lines of force are 
completely aligned with the flow field to all orders in e. 

It will be useful at this stage to introduce a system of orthogonal curvilinear coordinates 
(X, Y) consisting of lines parallel to the body surface and orthogonal trajectories normal to the 
body surface, with the origin of coordinates at the front stagnation point. We shall refer to this 
system as the curvature coordinate system. The non-dimensional surface curvature K (X)= 
1/R (X) is measured positive when the wall is convex outwards. The line element of length in 
this system is given by 

dS 2 = (1 + Ky)2 dX 2 + dY2 . (9) 

Equations (1) through (4) can now be expressed in component form by using the generalized 
orthogonal form of the vector operations involved and the relation (9). Given here for the first 
time, they are 

( I + K Y )  - 1 U x +  V r + K ( I + K Y ) - '  V = 0,  (10) 

( I + K Y )  -1 UUx+ VUr+ K (I + KY) -~ UV= 

- ( I  + K y ) -  I FIx+ S { (I + KY)-  I MMx+ NMr+ K (I + KY)- I  MN} 
+ ,:2 [(1 + K Y )  -2 Uxx+ U r r + K  (1 + K Y ) - '  U r + 2 K  (1 +KY) -2 V x 

L 
_ K 2 ( I + K y ) _ 2 U _ ( I + K y ) _ 3 y d K  dK ] d x U x +  ( I + K Y ) - 2 d x V  , (l la)  

(1 +KY) -~ UVx+ VVr- K (1 + K Y ) - '  u ~ = 

-FIr + S{(I + Ky ) - I  MNx+ N N r - K ( I  + KY) - I  M 2} 
..}_~2 [(I + K y ) -  2Vxx+ Vrr+ K(I + K y ) - I  Vr_2K(I  + Ky)-2Ux 

_ K 2 ( I + K Y ) _ 2 V _ ( I + K Y ) _  3 ~dK U - (1 + K Y ) -  3 ydK~ Vx] , ( l l b )  

( I + K Y )  1 M x + N r + K ( I + K y ) - I N = O ,  (12) 

/32 
U N -  VM = ~ [ ( I + K Y ) - a N x - M r - K ( I + K Y ) - a M ] ,  (13) 

where (U, V) and (M, N) are the components of the velocity and magnetic field respectively 
and the letter suffixes denote the partial differentiation. 

The hydrodynamic equations in the curvature coordinates have been given by Schlichting 
[8]. 

The outer expansions (6) can be broken into the component form and then substituted in 
equations (10) through (13). Collecting equal powers ofe we obtain outer equations for different 
orders. In general these equations satisfy only the outer boundary conditions (5a). From the 
first order outer expansions and their boundary conditions we can obtain 

Lim M I y  = K(U2-SM2) ,  
r~o (14) 

L i m U  l r = - K U  1 ; L i m M  l r = - K M 1 ,  
Y--+O Y~O 

with U 1 = M 1 from (7). 
Using lower case letters to denote the variables in the boundary layer, we define an inner limit, 

~ 0 ,  as x = X  and y =  Y/~ are fixed and make the following expansions. 

u (x, y, e) ~ u, (x, y)+ eu 2 (x, y)+ 0 (e2), (15a) 

v (x, y, ~) -- ev 1 (x, y) + e 2 v 2 (x, y) + 0 (ca), (15b) 

(x, y, e) - lr 1 (x, y)+ eTr 2 (x, y) + 0 (e2). (15c) 
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The expansions for m and n are similar to those for u and v respectively. Substituting (15) in 
equations (10) through (13) and collecting equal powers of e, we obtain 

ulx+vly = 0, (16a) 

uly , - (u lUlx+Vlu ly )+S(mimlx+namly) -n lx  = 0,  (16b) 

nly = 0,  (16c) 

mlx+nty = 0,  (16d) 

mly+Pm(uln l - -v lml )  = O, (16e) 

u2~+ (v2 + Kyvt) ,  = O, (17a) 

u2yr-(ulU2x + U2Ulx + Vl U2y + V2Uly) + S (ml mzx + mzmlx + nl m2y q- n2mly ) = 

= 7Czx-k-K {y(v~uly-u lyy-Sn~mly)+ulv  ~ - u l y - S m ~ n ~ } ,  (17b) 

fez, = K (u21 - Sm2), (17c) 

m2~ + (n 2 + Kynl)y = 0,  (17d) 

rrt2y --}- Pm (u2n 1-1- u t n 2 - -  V z m  1 --/~1 m2) + 
K [ y { m l y + P m ( u l n l - v l m a ) } + m l ]  = 0. (17e) 

These equations satisfy the boundary conditions at the body surface, i.e. 

y = 0 :  u l = v  l = n  1 = 0 ,  (18a) 

y = 0 :  u 2 = v  2 = n  z = O ,  (19a) 

and in general, they do not satisfy conditions at infinity. 
To get complete solutions of the equations (16) and (17), additional boundary conditions 

are needed. These are obtained by matching the inner and outer expansions in their region of 
common validity. This is done by taking the inner asymptotic expansion of the outer solution 
and comparing this to appropriate orders with the inner asymptotic expansion for large y 
[9]. Thus we have 

v1 (x ,  0) = 0 ,  (18b) 
N, (X, 0) = 0 ,  (18c) 

u 1 (x, oo ) = U1 (X, 0), (lSd) 

m I (x, oo ) = M 1 (X, 0), (18e) 

(x, ) = (x ,  0) ,  (180 

u 2 (x, y) ,~ - K y U  1 (X, 0)+ U 2 (X, 0), as y ~ oo , (19b) 

m2(x, y ) ~  - K y M  1 (X, 0 ) + M  2(X, 0), as y ~  ~ , (19c) 

~2 (x, y) ~ Ky  [C 2 (X, O ) - S M  2 (X, 0)] + U2 (X, 0), as y ~ ~ . (19d) 

In deriving these equations we have assumed that the Taylor series expansions of the outer 
variables near Y= 0, exist, and we have also used relations (14). 

The terms U 2 (X, 0), M 2 (X, 0) and/12 (X, 0) in the above boundary conditions arise due to 
the displacement thickness effect. They are of the same order as the other terms. However, 
equations (17) are linear and therefore allow superposition. Thus following a suggestion by 
Rott and Lenard [10], the displacement thickness effect can be removed. 

From equations (17c) and (19d), we obtain the hydromagnetic pressure as 

y)= l,: (u -Sm )dy-Ir (2O) 
. 0  

We combine equations (16b, c) and (20). Thus 
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Uzyv- (u lUzx  +U2Ulx + VlUzy+Vzzqy)+ S (mlm2x + m2mlx  + n l m z y +  nzmly  ) = 

= i K f~ ( u 2 - S m 2 a ) d y - K  f :  { ( u ~ - U ~ ) - S ( m ~ - M ~ ) } d Y l x +  

K [ y  (VlU ly -- U l y y -  S~ 1 re ly  ) %- u I v I - U l y -  Sm I H I ] ,  (21) 

The boundary conditions for the 0 (e) equations are 

y = 0 :  u 2 = v  2 = 0 ,  n 2 = 0 ,  (22a) 

y --+ oo : u 2 --+ - K y  U 1 , m 2 - ,  - K y M 1  . (22b) 

This completes the formulation of O (Re -~) problem. 

3. Similarity analysis for case (1) 

The partial differential equations (16) and (17, 21) can be transformed into ordinary differential 
equations by the similarity method. Thus we introduce the following transformations: 

f x = U l d x  ; r /=  (2~)-�89 ; u 1 = U l f ; ,  
0 

v l = - ( 2 { ) - ~ U , { A + ( f i - 1 ) r / f ; }  ; m l = M a g ' , ,  

1~ 1 : - (2~)- ~ M l  { g l %- ( f l -  l )rl g; } ; h i 2 :  U l  f 2 , 

v 2 = - (2~)  -~ U~ l-f2 +(fl--  1) ' l f ; - - k r l  {f,  + ( f i -  1)r/f ;}],  

m e  = M l g 2 ,  g/2 = - ( 2 ~ ) - � 8 9  [ g e % - ( f l - 1 ) v / g 2 - k ~ { g l % - ( f l - 1 ) ~ g t l } ]  , 

fi = 2 d in U~ K = (2{) -{ U 1 k 
d l n ~  ' 

with U~ = M 1, and primes denoting differentiation with respect to t/. Furthermore, fi and k are 
assumed to be constants. 

The equations (16a, d) and (17a, d) are identically satisfied by these transformations. Sub- 
stituting the transformations in the equations (16b, c, e) and (17e, 21), we obtain 

The O (1) similarity equations : 

f ( '  + f l  f (  + fi (1 _ f ;2 )  = S { gl gl" %- 13 (1 -- gl 2) }, (23a) 

g~ + P m  (fl g'l - f ;  g,) = 0.  (23b) 
/I 

The O (e) similarity equations: 

f#'! + f ,  fJ' + f~'f2 - S (g~ g#'+ g'l' g2)+ 213 (Sg'~ g2 - f ~ f 2 )  = 

= k [ (13 - 1)/(13 + 1)(f;' + f l f ;  - Sg l  g l ) +  2fl/(13 + 1)-{ fl (1 - S)r/+ (1 - S)2} - ~/f~'], 
(24a) 

g2 -- Pm (g~ f~ + g2f~ - f~ g'2 - gl f2) 2r- k (/~ g'1%- gi) = 0,  (24b) 

where 

2 = lim 0 7 - f ~ ) =  lira ( , / -g~) .  
W-+oO q~cO 

The O(e) pressure gradient has been evaluated by using equation (23a). The boundary 
conditions (18) and (22) become 

r / = 0 :  f l  = f /  = g l =  O, 
rl --+oo �9 f ;  -~ 1, g', --+ 1, (25) 
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~ = 0 : f 2  = f j  = g2 = 0 ,  
t/~ov : f 2 ~ - k t /  ; g i ~ - k r / .  (26) 

In (24) and (20, k can be absorbed in f2 and gz so that solutions are obtained for f2/k and 
gz/k: 

4. Solution and results for case (1)  

Equations (23) and (24) are strongly coupled, and in addition equations (23) are also nonlinear. 
An orthodox approach like power series expansion to get an analytical solution of these 
equations is not convenient because the O (e) equations give complicated expressions. However, 
numerical methods of solution can be conveniently used. The equations have been solved 
simultaneously by the Runge-Kutta method with Gill's improvement on an IBM 7044 high 
speed digital computer at I.I.T., Kanpur (India) for specific values of the parameters fl, Pm 
and S (< 0.5). The solutions are shown in Figs. I and 2 and in Table 1 at the end of the paper. 
The results are believed to be correct up to six decimals. Even then an error of a few units in 
the sixth decimal cannot be ruled out. 

0.~ / / /  

0 .~ 

O'A s ~  / 

0,?. 

o . o  ~:o z !o  ~.o 4 . 0  50 ~.o 7:o ~ ~  s .o  ,~.o 

Figure 1. MHD flow with aligned magnetic field. Boundary layer O(1) velocity and magnetic field profiles. 

V V "  Y : "  P,, -1.o '~ $ 5 G. 
Figure 2. MHD flow with aligned magnetic field. O (e) velocity and magnetic field profiles. 
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TABLE 1 

Variation of the skin friction coefficient and magnetic fieM at the surface (case (i)) 

Pm S f~ "(0) 9~ (0) -f~' (O)/k - 9~ (O)/k 

-0.14 0.5 0 . 0 0  0 . 2 3 9 7 3 6  0 . 4 5 9 4 4 0  1.178165 0.562200 
0 . 1 0  0 . 2 1 4 4 0 2  0 . 4 3 9 3 9 9  1.176294 0.613046 
0 . 2 0  0 . 1 8 3 5 3 6  0 . 4 1 6 0 8 3  1.170551 0.676277 
0 .25  0 . 1 7 0 4 0 3  0 . 4 0 2 8 4 8  1.169836 0.717144 

1.0 0 . 1 0  0 . 2 1 5 6 4 0  0 . 3 6 6 9 5 9  1.178021 0.592748 
0 . 2 0  0 . 1 8 9 7 9 5  0 . 3 4 6 8 4 3  1.177478 0.645190 
0 . 3 0  0 . 1 6 1 7 1 9  0 . 3 2 3 6 4 4  1.176534 0.712870 

5.0 0 . 1 0  0 . 2 2 1 1 1 1  0 . 2 2 6 5 0 0  1.174196 0.474990 
0 . 2 0  0 . 2 0 1 7 9 9  0 . 2 1 4 9 2 6  1.174482 0.499863 
0 . 2 5  0 . 1 9 1 8 5 9  0 . 2 0 8 7 5 9  1.174544 0.513889 

0.00 0.5 0 . 0 0  0 . 4 6 9 6 0 0  0 . 5 3 1 6 8 3  1.446967 0.429849 
0 . 1 0  0 . 4 4 1 7 7 3  0 . 5 1 6 0 7 6  1.445577 0.458324 
0 . 2 0  0 . 4 1 1 8 5 3  0 . 4 9 8 4 5 2  1.443442 0.491895 
0 . 3 0  0 . 3 7 9 4 4 6  0 . 4 7 8 2 8 9  1.440103 0.532123 
0 .40  0 . 3 4 4 0 2 5  0 . 4 5 4 8 3 6  1.436156 0.581970 

1.0 0 . 1 0  0 . 4 4 0 7 8 2  0 . 4 4 2 4 6 7  1.444451 0.458881 
0 . 2 0  0 . 4 1 0 0 7 6  0 . 4 2 6 0 3 0  1.440893 0.488426 
0 . 3 0  0 . 3 7 7 1 6 3  0 . 4 0 7 4 9 6  1.436866 0.523247 
0 . 5 0  0 . 3 0 2 8 0 9  0 . 3 6 1 5 9 1  1.419676 0.616991 

5.0 0 . 1 0  0 . 4 4 1 7 2 3  0 . 2 9 0 3 6 4  1.443433 0.397875 
0 . 2 0  0 . 4 1 2 4 0 1  0 . 2 7 8 8 5 1  1.438974 0.415549 
0 . 3 0  0381390 0 . 2 6 6 2 0 2  1.432900 0.435724 
0 . 4 0  0 . 3 4 8 3 4 7  0 . 2 5 2 1 3 5  1.429186 0.460178 

0.20 1.0 0 . 0 0  0 . 6 6 8 9 2 7  0 . 5 0 4 2 2 6  1.645558 0.376213 
0 . 1 0  0 . 6 5 0 5 4 7  0 . 4 9 7 1 4 4  1.644814 0.386185 
0 . 2 0  0 . 6 1 1 7 8 6  0 . 4 8 1 7 1 4  1.643914 0.410342 
0 . 3 0  0 . 5 6 9 9 3 2  0 . 4 6 4 2 4 6  1.642127 0.438836 
0 . 4 0  0 . 5 2 4 3 1 7  0 . 4 4 1 1 7 0  1.639175 0.474657 
0 . 5 0  0 . 4 7 4 0 0 6  0 . 4 2 0 6 4 0  1.634189 0.516667 

5.0 0 .05  0 . 6 6 8 0 2 7  0 . 3 4 4 7 4 5  1.644244 0.345630 
0 .15  0 . 6 2 9 0 9 4  0 . 3 3 3 3 2 9  1.641732 0.360544 
0 . 2 0  0 . 6 0 8 7 5 6  0 . 3 2 7 2 0 4  1.639330 0.370190 
0 . 3 0  0 . 5 6 0 0 7 1  0 . 3 1 3 9 6 8  1.634946 0.389282 
0 . 4 0  0 . 5 2 0 2 3 8  0 . 2 9 9 1 3 0  1.629327 0.411217 

The so lu t ions  of  the F a l k n e r - S k a n  equat ions ,  given by  Smi th  [11],  were used to  p rov ide  
the guess for the init ial  value f i '  (0). Sensible guesses for the  o ther  miss ing in i t ia l  values  and  
the smal l  inc rement  in S (which was r educed  wi th  the increase  in the g r o u n d  va lue  of  S) wi th  
other  pa r ame te r s  fixed, give r ap id  convergence.  

In  Figs. 1 and  2, the b o u n d a r y  layer  veloci ty  and magne t i c  field profi les  for different values  
of  13 and  S and  for Pro= 1 are  shown.  The  va r ia t ions  of  the  skin fr ic t ion and  the magne t ic  
field at the b o d y  surface with S, for different values  of/~ and  Pro, are  given in Tab le  1. 

To the best  of  the  knowledge  of  the au thors ,  so lu t ions  to even the O(1) b o u n d a r y  layer  
p r o b l e m  (i.e. equa t ions  (23)) are  not  ava i lab le  for m o d e r a t e  values  of  P m  and  non -ze ro  values  
of/~. In  [4] ,  so lu t ions  for very large and  very smal l  values  of  P m  have  been  ob ta ined .  

As  expected,  the magne t ic  field r educed  the O (1) skin  friction. The  O (1) magne t i c  field at  the  
wall  also reduces  with the increase in the value  of  S. This  is s imilar  to the  resul t  der ived  in [4]  
for large values  of  Pro. 

The magne t i c  field has  a weak influence on  the O (e) co r rec t ion  to  the skin  fr ic t ion due  to  the  
surface curvature .  It opposes  the surface curva tu re  by reducing  the O (~) co r rec t ion  to the skin  
friction. 

As po in t ed  out  in [2] ,  the d o m i n a n t  r eason  for the  r educ t ion  of  skin fr ic t ion on  the  convex 
side appea r s  to be tha t  in the  i r ro t a t i ona l  ou te r  flow, the  veloci ty  t ends  to  decrease  away  f rom 
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the surface. Also from equation (20) it can be seen that the hydrodynamic and magnetic parts 
of the O(e) hydrodynamic pressure are opposed to each other. One, therefore, expects the 
magnetic field to reduce the 0 (e) skin-friction-correction. 

A moderate change in the value of Pm does not affect significantly the O(1) and O (e) skin 
friction coefficients. The O(1) and O (e) magnetic field values at the wall decrease with an 
increase in Pro. 

5. Flow past a magnetised surface (case (11) ) 

Zigulev I-5] has formulated the boundary layer equations for the MHD flow past a surface, 
magnetised by a passing current through a closely wound solenoid around it. We consider the 
effect of body surface curvature on such a boundary layer flow. Equations (1) through (4) are 
the basic equations for the problem, except that in this case S will have a different meaning 
since the magnetic field is prescribed at the body surface and not in the free stream. The boun- 
dary conditions for this case are 

Q : 0 ,  Hta n : 1 at the body surface, (27a) 

Qtan ~ 1 ; O . . . .  ~ 0 ; H ~ 0 at upstream infinity. (27b) 

Making outer expansions of the field variables, similar to (6), and substituting them in (4), 
we obtain 

Q I X H  i : 0 =  {22 •  . . . . .  (28) 

From (27b) and (28), we have 

H I = 0 = H  2 =  . . . .  (29) 

Following exactly the procedure outlined in case (i), we can obtain the partial differential 
equations for the boundary layer to O(@ They are the same as equations (16) and (17, 21), 
except that in this case M 1 = 0. The boundary conditions to be satisfied by these equations are 

y = 0: u x = V 1 = 0 ,  m I = 1 , u 2 = v 2 = m 2 = 0 ,  

y--.oo : u i ~  U1 ' m i ~ 0 ,  u 2 ~ - K y U i  ' rn2--,0. (30) 

The similarity analysis for the problem is possible only for a uniform outer flow. Thus we 
set rclx equal to zero in equation (16b), and introduce the following similarity transformations : 

r /=  (2x)- ~ U~ y ,  K = k (2x)- ~ U1, 

U 1 = U l f ; ,  vl = - ( 2 x ) - ~ U i  ( L - r / f ; )  

ml = 9'1, ni = - - (2x) -~(g i - -r /g ' l ) ,  

u 2 = uIUJ,  v2 = --(2x)-~Ui { f z - r / f ~ - k r / ( f l - r / f ; ) } ,  

m2 = g~, n2 = -(2x)  -~ { g z - r / g ' a -  kr / (91-r /g ' l ) } ,  

where fl ,  gl, f2, g2 are the functions of r/only, primes denote differentiation with respect to r/, 
and k is a constant. 

We substitute these transformations in the boundary layer equations. The resulting equations 
are (23) and (24) with fi=0. Here we define S=(fl*H*Z)/(p*Q .2 U2), or otherwise U1 can be 
conveniently taken to be unity. The boundary conditions (30) become 

r / = 0 : f ~ ' = f ~ = 0  ; g ' l = l  ; f 2 = f j = g ; = 0 ,  

r/--,oo : f l  -* 1 ; 9'1 --* 0 ; f2--* -kr /  ; g2 ~ 0.  (31) 

Equations (23) and (24) with fl = 0 and boundary conditions (31) are solved numerically on a 
computer as in case (i). The solutions are given in Figs. 3 and 4 and in Table 2. 

To the best of the knowledge of the authors, the solution of even the 0 (1) boundary layer 
problem for moderate values of Pm is not available. 

Figs. 3 and 4 show the O(1) and O(e) boundary layer velocity and magnetic field profiles 
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Figure 3. M I l D  flow over magnetised surface. Boundary layer velocity profiles. 
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Figure 4. MHD flow over magnetised surface. Magnetic boundary layer profiles. 

respectively, for different values of S and Pro= 1. Table 2 gives the variation of the O(1) and 
O (e) skin friction coefficients with S for different values of Pro. 

The magnetic field reduces the O (1) and O (e) skin friction coefficients on the convex side. The 
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TABLE 2 

Variation in skin friction coefficient and initial values (case (ii) ) 

Pm S f[' (0) - g, (0) --fj' (O)/k - g2 (O)/k 

0.5 0.00 0.469600 1.958724 1.446967 1.296191 
0.10 0.427154 2.002760 1.451862 1.464298 
0.20 0.383292 2.053452 1.460700 1.681509 
0.30 0.337734 2.113079 1.476802 1.976301 
0.40 0.290054 2.185313 1.504132 2.400521 

1.0 0.10 0.433787 1.570611 1.456612 1.249271 
0.20 0.396954 1.604218 1.471216 1.400750 
0.30 0.358845 1.642986 1.492128 1.598601 
0.40 0.319335 1.687924 1.518719 1.857241 
0.50 0.278064 1.741569 1.555615 2.217025 

5.0 0.10 0.446405 0 . 9 0 5 3 2 6  1.461310 0.814155 
0.20 0.422805 0.917800 1.476342 0.873779 
0.30 0.398569 0.931462 1.496795 0.945901 
0.40 0.373957 0.946230 1.517224 1.027584 

relative effect of the magnetic field in reducing the O (1) skin friction decreases with the increase 
in Pro. An opposite trend is observed in the case of O (e) skin friction. For large values of S, a 
moderate change in Pm appears to have very little influence on the O (s) skin friction. 

An examination of the expression for the O (e) pressure suggests that the magnetic field should 
help the curvature in reducing the skin friction. 
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